東海大橋混凝土結構耐久性策略及高性能混凝土在工程中的應用
由于東海大橋是連接港區(qū)和大陸的集裝箱物流輸送動脈,對上海深水港的正常運轉起到不可或缺的支撐保障作用,因此在國內首次采用100年設計基準期,可謂世紀工程。為保證東海大橋混凝土結構的耐久性,工程采取了以高性能混凝土技術為核心的綜合耐久性技術方案。然而我國目前大型海洋工程超長壽命服役的相關技術規(guī)范,高性能混凝土的設計、生產、施工技術在工程中的應用方面尚為空白,因此結合東海大橋工程的具體需要,研究跨海大橋混凝土結構耐久性策略和高性能混凝土的應用技術極為迫切和重要。
1、東海大橋混凝土結構布置
2、東海大橋附近海域氣象環(huán)境
3、東海大橋面臨的耐久性問題
東海大橋位于典型的亞熱帶地區(qū),嚴重的凍融破環(huán)和浮冰的沖擊磨損可不予考慮;鎂鹽、硫酸鹽等鹽類侵蝕和堿骨料反應破壞則可以通過控制混凝土組分來避免;這樣鋼筋銹蝕破環(huán)就成為最主要的腐蝕荷載【1】。
混凝土中鋼筋銹蝕可由兩種因素誘發(fā),一是海水中Cl-侵蝕,二是大氣中的CO2使混凝土中性化。國內外大量工程調查和科學研究結果表明,海洋環(huán)境下導致混凝土結構中鋼筋銹蝕破壞的主要因素是Cl-進入混凝土中,并在鋼筋表面集聚,促使鋼筋產生電化學腐蝕。在東海大橋周邊沿海碼頭調查中亦證實【1】,海洋環(huán)境中混凝土的碳化速度遠遠低于Cl-滲透速度,中等質量的混凝土自然碳化速度平均為3mm/10年。因此,影響東海大橋結構混凝土耐久性的首要因素是混凝土的Cl-滲透速度。
國內外相關科研成果和長期工程實踐調研顯示,當前較為成熟的提高海洋鋼筋混凝土工程耐久性的主要技術措施有【2、3、4、6、7】:
(1)高性能海工混凝土
(2)提高混凝土保護層厚度
(3)混凝土保護涂層
(4)涂層鋼筋
(5)阻銹劑
(6)陰極保護
因此,東海大橋混凝土結構的耐久性方案的設計遵循的基本方案是:首先,混凝土結構耐久性基本措施是采用高性能混凝土。同時,依據(jù)混凝土構件所處結構部位及使用環(huán)境條件,采用必要的補充防腐措施,如內摻鋼筋阻銹劑、混凝土外保護涂層等。在保證施工質量和原材料品質的前提下,混凝土結構的耐久性將可以達到設計要求。
對于具體工程而言,耐久性方案的設計必須考慮當?shù)氐膶嶋H情況——如原材料的可及性、工藝設備的可行性等,以及經濟上的合理性。也就是說應該采取有針對性的,因地制宜的綜合防腐方案。
結構部位 |
海洋環(huán)境分類 |
保護層厚度mm |
混凝土強度等級 |
混凝土品種 |
輔助措施 |
備注 |
鉆孔灌注樁 |
水下區(qū)、樁頭水位變動區(qū) |
70 |
C30 |
大摻量摻合料混凝土 |
上部為不拆除的鋼套筒 |
|
承臺 |
水位變動區(qū)、浪濺區(qū) |
90 |
C40 |
高性能混凝土 |
水位變動區(qū)、浪濺區(qū)部位涂防腐蝕涂層 |
|
墩柱 |
水位變動區(qū)、浪濺區(qū) |
70 |
C40 |
高性能混凝土 |
水位變動區(qū)、浪濺區(qū)部位涂防腐蝕涂層 |
|
箱梁 |
大氣區(qū) |
40 |
C50 |
高性能混凝土 |
|
|
橋面板 |
大氣區(qū) |
40 |
C60 |
高性能混凝土 |
|
|
塔柱 |
下部為水位變動區(qū)、浪濺區(qū),上部為大氣區(qū) |
70 |
C50 |
高性能混凝土 |
水位變動區(qū)、浪濺區(qū)部位涂防腐蝕涂層 |
|
5.1.1水泥
物理分析 |
密度
g/cm3 |
細度
0.08mm篩余
% |
比表面積
m2/kg |
凝結時間(h) |
標準稠度用水量
(%) |
安定性 |
抗折強度(MPa) |
抗壓強度(MPa) | |||||||||||||
初凝 |
終凝 |
3d |
7d |
28d |
3d |
7d |
28d | ||||||||||||||
3.12 |
1.00 |
427 |
1:45 |
3:18 |
26.00 |
合格 |
6.3 |
8.6 |
10.0 |
33.1 |
58.9 |
67.9 | |||||||||
化學分析 |
化學組成(%) | ||||||||||||||||||||
SiO2 |
Al2O3 |
Fe2O3 |
CaO |
SO3 |
K2O |
Na2O |
MgO |
LOSS | |||||||||||||
21.48 |
5.44 |
3.15 |
63.40 |
2.02 |
0.75 |
0.44 |
1.12 |
2.19 | |||||||||||||
5.1.2磨細礦渣(礦渣微粉)
物理分析 |
流動度比% |
比表面積(勃氏法)m2/kg |
7d活性指數(shù)% |
28d活性指數(shù)% |
密度g/cm3 | |||||
試驗結果 |
102 |
470 |
77 |
98 |
2.91 | |||||
化學分析 |
化學組成(%) | |||||||||
SiO2 |
Al2O3 |
Fe2O3 |
CaO |
SO3 |
MgO | |||||
試驗結果 |
31.0 |
14.2 |
2.08 |
40.95 |
0.89 |
7.75 | ||||
5.1.3粉煤灰
物理分析 |
45μm篩余% |
需水量比% |
活性指數(shù)
(28d抗壓強度比)% |
含水率% |
燒失量% |
SO3
% |
密度
g/cm3 | |||||||
試驗結果 |
10.5 |
105 |
26.4 |
0.2 |
1.98 |
0.83 |
2.1 | |||||||
化學分析 |
化學組成(%) | |||||||||||||
SiO2 |
Al2O3 |
Fe2O3 |
CaO |
SO3 |
K2O |
Na2O |
MgO | |||||||
試驗結果 |
51.04 |
32.86 |
8.26 |
3.35 |
0.83 |
0.50 |
0.31 |
0.36 | ||||||
5.1.4硅粉
物理分析 |
45μm篩余
% |
比表面積
(勃氏法)
m2/kg |
活性指數(shù)
% |
含水率
% |
燒失量
% |
SiO2含量
% |
試驗結果 |
1.0 |
18000 |
103 |
0.9 |
2.4 |
92 |
5.1.5粗骨料
項目 |
表面
密度
(kg/m3) |
堆積
密度
(kg/m3) |
空隙率
(%) |
含泥量
(%) |
累 計 篩 余 (%) |
細度模數(shù)
μf | ||||||
10.0 |
5.00 |
2.50 |
1.25 |
0.63 |
0.315 |
0.16 | ||||||
試驗
結果 |
2632 |
1538 |
41.6 |
1.0 |
0 |
1 |
6 |
14 |
48 |
84 |
94 |
2.4 |
5.1.7減水劑
檢 驗 項 目 |
GB8076-1997
高效減水劑規(guī)定值 |
試驗結果 | ||
一等品 |
合格品 |
LEX-9H | ||
減水率(%)不小于 |
12 |
10 |
27 | |
泌水率(%)不大于 |
90 |
95 |
27 | |
含氣量(%) |
≤3.0 |
≤4.0 |
2.9 | |
凝結時間
之差(min) |
初凝 |
-90~+120 |
+17 | |
終凝 |
+15 | |||
抗壓強度比(%) |
1d |
140 |
130 |
193 |
3d |
130 |
120 |
183 | |
7d |
125 |
115 |
173 | |
28d |
120 |
110 |
150 | |
收縮率比(%)不大于 |
135 |
99 | ||
對鋼筋銹蝕作用 |
鈍 化 |
鈍 化 |
5.1.8拌和用水
5.2試驗方案和主要試驗方法
用濃度曲線法測試混凝土表觀氯離子擴散系數(shù)的試驗方法,參照NT Build 443方法,將標準養(yǎng)護28天的混凝土試件浸泡于質量濃度為3.0%的NaCl溶液中至指定齡期(90d)后,用剖面切削機從混凝土表面以不大于2mm的厚度取樣,并用化學方法測試樣本氯離子濃度,做混凝土氯離子濃度-深度曲線并用Fick第二定律進行非線性回歸求得混凝土表觀氯離子擴散系數(shù)。
5.3 混凝土配合比設計
編號 |
摻合料類型 |
水膠比 |
每立方砼中材料用量(kg/m3) | ||||
水泥 |
摻合料 |
砂 |
石 |
外加劑 | |||
35J |
基準組 |
0.36 |
400 |
0 |
686 |
1168 |
3.6 |
35I |
I |
0.36 |
120 |
280 |
668 |
1188 |
3.6 |
35II |
II |
0.36 |
120 |
280 |
668 |
1188 |
3.6 |
50J |
基準組 |
0.32 |
470 |
0 |
641 |
1139 |
4.23 |
50I |
I |
0.32 |
188 |
282 |
641 |
1139 |
4.23 |
50II |
II |
0.32 |
188 |
282 |
641 |
1139 |
4.23 |
5.4高性能混凝土性能試驗結果及分析
混凝土 |
抗壓強度(MPa) |
劈拉強度
(MPa) |
抗折強度
(MPa) |
軸壓強度(MPa) |
彈性模量(104MPa) |
35基準砼 |
43.3 |
4.0 |
7.4 |
29.4 |
3.35 |
海工I |
38.7 |
3.9 |
7.7 |
26.7 |
3.27 |
海工II |
41.0 |
4.1 |
7.6 |
28.9 |
3.55 |
50基準砼 |
58.5 |
4.0 |
9.0 |
32.2 |
3.69 |
海工I |
52.4 |
3.9 |
8.7 |
31.3 |
3.65 |
海工II |
66.7 |
4.5 |
9.9 |
32.9 |
4.13 |
混凝土 |
碳化深度(mm) |
滲透高度(mm) |
抗凍(凍融循環(huán)100次) | |||
碳化深度
(mm) |
強度損失(%) |
最大滲水壓力(MPa) |
滲水高度
(mm) |
質量損失
(%) |
相對動彈性模量損失(%) | |
35基準砼 |
0.30 |
0.63 |
2.5 |
26.3 |
0.9 |
8.1 |
海工I |
0.16 |
0.42 |
2.5 |
7.1 |
0.6 |
6.9 |
海工II |
0.16 |
0.46 |
2.5 |
6.5 |
0.6 |
7.2 |
50基準砼 |
0.25 |
0.50 |
2.5 |
20.5 |
0.7 |
7.2 |
海工I |
0.17 |
0.38 |
2.5 |
6.6 |
0.5 |
6.8 |
海工II |
0.14 |
0.37 |
2.5 |
5.4 |
0.4 |
6.4 |
編號 |
電通量(C) |
表觀Cl-擴散系數(shù)Da(E-12m2/s) |
備注 |
35基準砼 |
1263 |
4.85 |
此中Da值為浸泡90天時的測試值 |
海工I |
826 |
1.28 | |
海工II |
741 |
1.10 | |
50基準砼 |
1112 |
4.26 | |
海工I |
750 |
1.15 | |
海工II |
637 |
0.95 |
(1)預先質量控制與評估(PreQC&QA),是在了解工程背景、使用環(huán)境以及混凝土材料在海洋環(huán)境中的性能特點的基礎上,通過對材料性能的試驗研究,建立混凝土結構耐久性設計的數(shù)據(jù)和依據(jù),并預測混凝土結構的實際使用性能
(2)耐久性方案設計(Design link to SLP),充分考慮各種可變因素對鋼筋混凝土結構使用壽命的影響,如環(huán)境溫度、混凝土內應力、裂縫等,以建立使用壽命預測系統(tǒng),為耐久性方案的設計提供指導和依據(jù)。再以使用壽命預測系統(tǒng)為基礎,制定有針對性的耐久性解決方案。
(3)質量控制與評估(QC&QA),是指在方案的實施過程中如何控制各方面的質量以及如何對已完成部分的質量進行評估的過程。在質量控制與評估環(huán)節(jié)中,主要需要確立各種質量控制措施和實施標準,建立各種性能試驗的評價體系,保證混凝土性能符合方案設計要求。
(1)高性能混凝土保護層厚度質量控制和保證措施
(2)高性能混凝土的養(yǎng)護
在試驗過程中發(fā)現(xiàn),頂面混凝土由于陽光直射溫度較高產生溫差過大的現(xiàn)象,同時由于風速較大也容易造成混凝土表面失水過快,混凝土表面收縮較大而導致混凝土開裂。因此,在實際施工過程中,箱梁混凝土澆注完畢后即在頂面加蓋塑料薄膜頂棚以保溫保濕。對于預制箱梁等大型預制構件,由于預制場地的限制和施工進度要求,采用低溫蒸養(yǎng)的方式。
編輯:
監(jiān)督:0571-85871667
投稿:news@ccement.com