混凝土抗凍等級(jí)確定方法及生產(chǎn)技術(shù)的探討
引言
混凝土抗凍等級(jí)是衡量混凝土耐久性的一個(gè)重要指標(biāo)。目前,GBJ 82-85中規(guī)定混凝土抗凍等級(jí)的確定方法,是采用慢凍法和快凍法2種。這2 種方法的共同特點(diǎn)是按規(guī)定使混凝土試塊在冷凍前后處于水中浸泡和融化,并且要求水面至少分別高出試件頂面20mm和5mm(快凍法試件盒內(nèi))以上。也就是說試塊必須完全浸入水中融化并吸飽水分。用這種方法測(cè)試并評(píng)定混凝土的抗凍等級(jí)存在一個(gè)很重要的問題,即試塊吸飽水分后的含水率高低,完全取決于混凝土試塊的吸水性,而不是取決于混凝土試塊的吸濕性,這與大多數(shù)混凝土工程在應(yīng)用環(huán)境中的實(shí)際含水率無相關(guān)性。因?yàn)楸仍叫。炷恋膹?qiáng)度越高。
大多數(shù)混凝土工程是暴露于大氣中,而不是浸于水中。這些工程中混凝土的實(shí)際含水率主要取決于混凝土在空氣中的吸濕性,而不取決于混凝土的吸水性。
1 抗凍等級(jí)確定方法的商榷
混凝土的吸水性和吸濕性是2個(gè)完全不同的概念。吸水性是指混凝土在水中吸收水分的性質(zhì)通常取決于混凝土中毛細(xì)孔數(shù)量多少和毛細(xì)孔半徑的大小。當(dāng)混凝土浸入水中,其內(nèi)部孔隙只要是開孔毛細(xì)孔就能被水充滿。因此,在毛細(xì)孔半徑范圍以內(nèi),毛細(xì)孔越多、半徑越大,混凝土的吸水率越高。其吸水性受大毛細(xì)孔數(shù)量的影響較大,而受微毛細(xì)孔影響相對(duì)較小。吸濕性是指混凝土在潮濕空氣中吸收水分的性質(zhì),與吸水性相反,吸濕性受大毛細(xì)孔影響較小,受微毛細(xì)孔數(shù)量影響相對(duì)較大。已有研究表明,只有在半徑小于0.1um 的微毛細(xì)孔中才能產(chǎn)生毛細(xì)孔凝結(jié)現(xiàn)象[1],它可以吸附周圍介質(zhì)的蒸汽而被充填,在孔壁上生成液膜,故這樣的孔具有吸濕性。所以,混凝土中微毛細(xì)孔數(shù)量越多,混凝土孔隙的吸濕性越強(qiáng),排濕性越弱。此時(shí),混凝土的孔隙率和吸水性都可能較低,但因具有吸濕性的微毛細(xì)孔數(shù)量較多,混凝土在大氣環(huán)境中仍然有相對(duì)較高的含水率(稱含濕率更為貼切)。
半徑大于0.1-1um的大毛細(xì)孔,只有直接與液體接觸時(shí)才能被液體充滿。在大氣中,大毛細(xì)孔不僅不吸收潮濕空氣中的水分,其中原有的水分反而會(huì)被排入空氣中[1]。這樣的孔隙不具有吸濕性。因此,混凝土中微毛細(xì)孔數(shù)量越少,大毛細(xì)孔數(shù)量越多,混凝土孔隙的吸濕性越弱;雖然,由于大毛細(xì)孔數(shù)量較多,混凝土的孔隙率和吸水性都可能較高,但處于大氣中混凝土的含濕率仍然可以較低。即吸水性低的混凝土仍可以有較高的吸濕性和含濕率;吸濕性和含濕率較低的混凝土也可以有較高的吸水性。作者試驗(yàn)中,分別采用含細(xì)顆粒(小于5um)較少的水泥和細(xì)顆粒含量較多的水泥制備成的水泥石試樣,在潮濕空氣中放置3d,含細(xì)顆粒較少的試樣,吸濕率比后者降低17%-37%;而在水中浸泡1d,前者吸水率比后者提高13%-29%[2]。
在此應(yīng)特別強(qiáng)調(diào)一下,混凝土的吸濕性或含濕率與混凝土孔隙體積的吸濕性或含濕率也是完全不同的2個(gè)概念。前者是相對(duì)混凝土的總體積(包括實(shí)體體積和孔隙體積)而言,主要取決于混凝土中微毛細(xì)孔的絕對(duì)數(shù)量多少;后者僅是針對(duì)混凝土中孔隙的體積而言,主要取決于混凝土中微毛細(xì)孔與其它較粗孔隙的相對(duì)數(shù)量。隨著混凝土孔隙率的降低和微毛細(xì)孔絕對(duì)數(shù)量的減少,處于大氣中混凝土的吸濕性或含濕率也會(huì)相應(yīng)減少;但此時(shí)只要混凝土內(nèi)部的微毛細(xì)孔數(shù)量相對(duì)較多,大毛細(xì)孔數(shù)量相對(duì)較少,即2者的數(shù)量之比較大,相對(duì)于混凝土孔隙體積的吸濕性和含濕率比較而言必增無疑。當(dāng)孔隙中水分結(jié)冰產(chǎn)生膨脹應(yīng)力時(shí),對(duì)孔壁造成的破壞和原有裂縫的擴(kuò)展必然會(huì)更加嚴(yán)重。相反,隨著混凝土孔隙率和微毛細(xì)孔絕對(duì)數(shù)量的增加,混凝土的吸濕性或含濕率也會(huì)相應(yīng)增加;但此時(shí)只要混凝土內(nèi)部的微毛細(xì)孔數(shù)量相對(duì)較少,大毛細(xì)孔數(shù)量相對(duì)較多,即二者的數(shù)量之比較小,處于大氣中混凝土孔隙體積的吸濕性和含濕率無疑會(huì)減少。因此,混凝土內(nèi)部孔隙和原有裂縫遭受冰凍破壞的影響自然也小。然而實(shí)際工程應(yīng)用當(dāng)中,人們通常忽略了混凝土的吸水性和吸濕性以及混凝土孔隙體積吸濕性之間的這種區(qū)別。甚至認(rèn)為它們之間始終存在著一致性。因此,在確定混凝土的抗凍等級(jí)和進(jìn)行抗凍性試驗(yàn)時(shí),只考慮了混凝土的吸水性對(duì)混凝土抗凍性的影響,而沒有考慮混凝土的吸濕性和混凝土孔隙體積的吸濕性對(duì)混凝土抗凍性的影響。
根據(jù)抗凍試驗(yàn)確定的抗凍等級(jí)也只能反映在規(guī)定飽水狀態(tài)下混凝土的抗凍性,并不能反映混凝土在大氣中的真實(shí)抗凍性。其結(jié)果是吸水性低的混凝土凍融循環(huán)次數(shù)多,抗凍等級(jí)高;但混凝土的吸濕性及混凝土中微毛細(xì)孔內(nèi)的吸濕性卻都可能較大,在處于實(shí)際應(yīng)用的大氣環(huán)境當(dāng)中,混凝土的含濕率特別是相對(duì)于混凝土孔隙體積的含濕率反而更高,導(dǎo)致混凝土的實(shí)際抗凍性并不一定好,甚至比抗凍等級(jí)低的混凝土還差。
2 混凝土生產(chǎn)技術(shù)的商榷
為了提高混凝土的抗凍等級(jí)等耐久性指標(biāo),目前混凝土施工和生產(chǎn)中除了采用引氣劑以外, 通常采用摻入高效減水劑、降低水膠比,并采用細(xì)度較細(xì)的早強(qiáng)水泥和細(xì)粒摻合料等方法。其初衷是通過減少混凝土內(nèi)部粗大的毛細(xì)孔數(shù)量或孔半徑來提高混凝土的強(qiáng)度和抗凍、抗?jié)B等耐久性能。但在混凝土生產(chǎn)中采用普通水泥和一般的施工方法,目前這一目的較難達(dá)到,實(shí)際生產(chǎn)出的混凝土大多數(shù)仍為多孔體系。
一般水膠比降低,只能使混凝土內(nèi)部的大毛細(xì)孔變成微毛細(xì)孔,造成大毛細(xì)孔數(shù)量減少,微毛細(xì)孔數(shù)量增多。如原蘇聯(lián)莫斯科門捷列夫化工學(xué)院的研究表明:水膠比由0.4 降低為0.22-0.25(硬化溫度200C),水泥石中半徑0.004-0.01um的微毛細(xì)孔(包括少0.004-0.005um 的超微孔)數(shù)量由20.8%-39.7%增加到28.5%-41.4%、半徑0.01%-0.1%um的微毛細(xì)孔數(shù)量由26.4%-33.2%增加到26.7%-49.8%;而半徑不小于0.1-1um的大毛細(xì)孔與半徑大于1um的非毛細(xì)孔數(shù)量之和由27.1%-52.8%減少至21.7%-28.3%[3]。特別是其中0.01-0.1um的微毛細(xì)孔數(shù)量的中間值(變化前后分別為29.8%和38.25%)與半徑不小于0.1-1um的大毛細(xì)孔和半徑大于1um的非毛細(xì)孔數(shù)量的中間值(變化前后分別為39.95%和25.0%)之比,由0.75增加到1.53,接近原來的2.1倍。
膠凝材料中細(xì)顆粒含量的增加與水膠比的降低有類似的作用效果。如原蘇聯(lián)的研究表明,提高水泥的細(xì)顆粒(<5um)含量,由于分散度很高,水化物充填了大部分毛細(xì)孔空間,必然生成微毛細(xì)孔,并使大毛細(xì)孔數(shù)量明顯減少[1]。
目前為提高混凝土抗凍等級(jí)、抗?jié)B等級(jí)和強(qiáng)度等級(jí)而采取的一些措施,在很多情況下使混凝土內(nèi)部的微毛細(xì)孔數(shù).
量增加,而使具有排濕性的大毛細(xì)孔數(shù)量減少。特別是微毛細(xì)孔和大毛細(xì)孔數(shù)量之比的顯著增大,使混凝土孔隙體積的吸濕性大幅提高。這一作法不但不能提高大多數(shù)混凝土(暴露于大氣中的混凝土)的抗凍性,反而會(huì)不同程度地降低混凝土的真實(shí)抗凍性和耐久性。
根據(jù)鮑維斯的研究發(fā)現(xiàn),在-40C時(shí)約60%的毛細(xì)孔水變成冰,在-120C有80% (以上的毛細(xì)孔水變成冰[4-5]。針對(duì)我國的氣候分區(qū)情況,溫區(qū)最冷月份的平均氣溫為0~-100C,寒區(qū)最冷月份的平均氣溫為-100C以下。故對(duì)我國大多數(shù)地區(qū)而言,在最冷月份足以使混凝土毛細(xì)孔內(nèi)的部分或大部分水結(jié)冰。由于大毛細(xì)孔的存在具有良好的排濕性,當(dāng)結(jié)冰時(shí),將有足夠的空間滿足結(jié)冰所引起的體積變化,所以處于大氣中的混凝土內(nèi)部可凍結(jié)水的數(shù)量主要取決于混凝土內(nèi)微毛細(xì)孔中的水量。當(dāng)微毛細(xì)孔隙內(nèi)的水分一旦結(jié)冰時(shí),微毛細(xì)孔中沒有足夠的空間緩沖結(jié)冰所造成的體積膨脹,此時(shí),結(jié)冰產(chǎn)生的膨脹應(yīng)力對(duì)混凝土孔壁的破壞必然更加嚴(yán)重。如原蘇聯(lián)的研究指出,混凝土中儲(chǔ)備孔(被蒸汽空氣混合氣體充填的孔)的相對(duì)體積越大,抗凍性越好。并著重指出,影響混凝土抗凍性的,與其說是儲(chǔ)備孔的絕對(duì)體積,不如說是儲(chǔ)備孔體與充滿水的孔體積之比[1]。其抗凍機(jī)理類似于引氣劑提高混凝土抗凍性的作用機(jī)理。此外,孔隙內(nèi)部含濕率高的混凝土,還會(huì)加劇空氣中腐蝕性介質(zhì)對(duì)混凝土的侵蝕及混凝土內(nèi)部鋼筋銹蝕等,導(dǎo)致混凝土的強(qiáng)度、抗凍性、抗裂性和抗?jié)B等耐久性能的下降[6]。當(dāng)前,我國正處于基礎(chǔ)建設(shè)高速發(fā)展的重要時(shí)期,對(duì)此影響因素應(yīng)引起重視。
[Page]
3 幾點(diǎn)建議
(1)對(duì)于暴露在大氣中的大多數(shù)混凝土工程,應(yīng)當(dāng)重點(diǎn)考慮混凝土在大氣中的抗凍性??箖鋈谠囼?yàn)方法應(yīng)將水融法改為氣融法(如在200C或更高溫度、濕度95%的環(huán)境中融化),盡管試驗(yàn)時(shí)間會(huì)相對(duì)延長,但可以通過適當(dāng)提高融化溫度的方法來解決?;炷量箖龅燃?jí)的確定也應(yīng)以氣融法為依據(jù),才能更好地反映其混凝土工程在實(shí)際應(yīng)用環(huán)境中的抗凍性。
(2)對(duì)于大多數(shù)混凝土工程,除了推廣采用引氣劑以外,必須在水膠比的控制方面徹底糾正混凝土內(nèi)毛細(xì)孔半徑越大、害處越多的傳統(tǒng)觀念[6]??刂七m當(dāng)?shù)乃z比,以避免混凝土內(nèi)部形成過多的微毛細(xì)孔和過少的大毛細(xì)孔。
(3)對(duì)于大多數(shù)以通用水泥為膠凝材料的混凝土工程,應(yīng)合理控制和選擇膠凝材料的粉磨細(xì)度,適當(dāng)控制其中小于5um的細(xì)顆粒含量,同樣可以避免混凝土內(nèi)部形成的微毛細(xì)孔數(shù)量過多。
(4)對(duì)于水工混凝土和抗?jié)B性要求高的混凝土,建議進(jìn)一步推廣和加強(qiáng)堿礦渣水泥及土壤聚合物水泥等膠凝材料的應(yīng)用和研究。如:堿礦渣水泥能夠大幅度提高混凝土中的超微孔數(shù)量。
(5)對(duì)于已經(jīng)竣工并采用低水膠比等技術(shù)措施的混凝土(尤其是高強(qiáng)混凝土和高性能混凝土)工程,建議在氣候干燥季節(jié)及時(shí)采用表面密封和表面改性等技術(shù)措施進(jìn)行保護(hù)。如采用防水涂料涂刷或有機(jī)硅防水劑浸漬混凝土表面,以降低混凝土孔隙內(nèi)部的吸濕性和含濕率,提高混凝土的抗凍性和大氣穩(wěn)定性等耐久性能。
參考文獻(xiàn):
[1]A.E.,謝依金.水泥混凝土的結(jié)構(gòu)與性能.北京:中國建筑工業(yè)出版社,1984.
[2]陳立軍.水泥粉磨工藝對(duì)透水性混凝土路面性能的影響.新型建筑材料,2003,(1):22-23.
[3] 第六屆國際水泥化學(xué)會(huì)議論文集.水泥水化與硬化(一).中國建筑工業(yè)出版社,1982,(11):528
[4]F.M李,水泥和混凝土化學(xué).中國建筑工業(yè)出版社,1980,8:758.
[5] 袁潤章.膠凝材料:武漢9武漢工業(yè)大學(xué)出版社,1996.
[6] 陳立軍"略論高性能混凝土的密實(shí)性與耐久性.混凝土,2003,(6):21-22.
(中國混凝土與水泥制品網(wǎng) 轉(zhuǎn)載請(qǐng)注明出處)
編輯:
監(jiān)督:0571-85871667
投稿:news@ccement.com